

Nucleo 4 WiFi Module

Version V1.0 Datasheet

Edition: 01.11.2021

Disclaimer and Copyright Notice

The information in this datasheet is subject to change without notice.

This document is provided "as is" without warranty of any kind, including any warranty of merchantability, fitness for a particular purpose, or non-infringement, and any warranty of any proposal, specification, or sample mentioned elsewhere. No liability is assumed in this document, including any infringement of any patent rights arising out of the use of the information in this document. No license is granted by estoppel or otherwise in this document, either express or implied.

The test data obtained in this article are all obtained from the testing performed by our labs. Actual results may vary slightly.

All trademark names, trademarks and registered trademarks mentioned in this article are the property of their respective owners and are hereby declared.

The final interpretation right belongs to IoTfy Solutions Private Limited

The contents of this datasheet may be changed due to product version upgrades or other reasons. IoTfy Solutions Private Limited reserves the right to modify the contents of this datasheet without any notice or prompt. This datasheet is only used as a guide. We make every effort to provide accurate information in this datasheet, but IoTfy Solutions Private Limited does not ensure that the content of the datasheet is completely error-free. All statements and information in this datasheet and recommendations do not constitute any express or implied warranty.

Table of Contents

0. Version History	3
1. Introduction 1.1. Features 1.2. Specification	5 7 8
 2. Pin Definition 2.1. Pin diagram 2.2. Pin function definition 	9 9 10
 3. Electrical Parameters 3.1. Electrical Characteristics 3.2. RF performance 3.3. Power consumption 	12 12 12 13
4. Dimensions	16
 5. Schematic 5.1. Application circuit 5.2. Antenna Layout Requirements 5.3. Power supply 5.4. Use of GPIO ports 	17 18 19 20 20
6. Reflow Profile	21
7. Packaging	22
8. Contact Us	23

0. Version History

Version	ECN#	Date	Notes	Revised By	Verified By
V1.0	-	01-11-21	Initial Release Version	Shashank S.	Gaurav P.

1. Introduction

Nucleo 4 is a WiFi module developed by IoTfy Solutions Private Limited. The core processor of the module ESP8285 integrates Tensilica L106 ultra-low-power 32-bit micro MCU in a smaller package with 16-bit reduced mode. The main frequency supports 80 MHz and 160 MHz, supports RTOS, and integrates WiFi MAC / BB / RF / PA / LNA.

Nucleo 4 WiFi module supports standard IEEE 802.11 b/g/n protocol and complete TCP/IP protocol stack. Users can use this module to add networking capabilities to existing equipment or build stand-alone network controllers.

ESP8285 is a high-performance wireless SoC that provides maximum practicality at the lowest cost, providing unlimited possibilities for WiFi functionality to be embedded in other systems.

Figure 1: ESP8285 Architecture

ESP8285 has a complete and self-contained WiFi network function, which can be used independently or run as a slave on other host MCUs. ESP8285 has built-in 2MB Flash, and the external circuit design is simple. The built-in cache memory helps improve system performance and optimizes the storage.

Another case is that ESP8285 can be used as a WiFi adapter only through SPI / SDIO interface or UART interface, and can be applied to any microcontroller-based design.

ESP8285's powerful on-chip processing and storage capabilities make it possible to integrate sensors and other application-specific equipment through the GPIO port, greatly reducing the cost of early development.

1.1. Features

- Complete 802.11b/g/n WiFi SoC module
- Built-in Tensilica L106 ultra-low-power 32-bit CPU, the main frequency supports 80 MHz and 160 MHz, and supports RTOS
- Built-in 10-bit high-precision ADC
- Built-in Flash
- Supports UART/GPIO/I2C/PWM/ADC interface
- SMD-16 package
- Integrated WiFi MAC/ BB/RF/PA/LNA
- Supports multiple sleep modes, deep sleep current as low as 20uA
- Serial port speed up to 4Mbps
- Embedded lwIP protocol stack
- Supports STA/AP/STA+AP working mode
- Smart Config support for Android and IOS
- Supports serial local upgrade and remote firmware upgrade (FOTA)
- General AT command can get started quickly
- Supports secondary development, integrated Windows, Linux development environment

1.2. Specification

Model name	Nucleo 4
Package	SMD-16
Size	16*24*2.8(±0.2)mm
SPI Flash	2MB Flash
Interface	UART/GPIO/ADC/PWM
IO ports	9
UART Baud Rate	Support 110 ~ 4608000 bps, Default 115200 bps
Frequency range	2400 ~ 2483.5MHz
Antenna	PCB antenna
Transmit Power	802.11b: 16±2 dBm (@11Mbps)
	802.11g: 14±2 dBm (@54Mbps)
	802.11n: 13±2 dBm (@HT20, MCS7)
Receiving Sensitivity	CCK, 1 Mbps : -90dBm
	CCK, 11 Mbps: -85dBm
	6 Mbps (1/2 BPSK): -88dBm
	54 Mbps (3/4 64-QAM): -70dBm
	HT20, MCS7 (65 Mbps, 72.2 Mbps): -67dBm
Power	Continuous Transmission=>Average: 71mA, Peak: 500mA
(Typical Values)	Light Sleep: 2mA
	Deep Sleep: 0.02mA
WiFi Security Modes	WEP/WPA-PSK/WPA2-PSK
Power supply	Voltage 3.0V ~ 3.6V, Current >500mA
Working temperature	-40°C ~ 105°C
Storage temperature	-40°C ~ 85°C, < 90% RH

2. Pin Definition

Nucleo 4 module has the following pin outs.

2.1. Pin diagram

Figure 2: Pinouts of Nucleo 4

2.2. Pin function definition

Pin No.	ю	Function description
1	RST	Reset Pin, Active Low
2	ADC	AD conversion, Input voltage range 0~1V, the value range is 0-1024
3	EN	Chip Enabled Pin, Active High
4	IO16	Connect with RST pin to wake up Deep Sleep
5	IO14	GPIO14; HSPI_CLK
6	IO12	GPIO12; HSPI_MISO
7	IO13	GPIO13; HSPI_MOSI; UART0_CTS
8	VCC	Module power supply pin, Voltage 3.0V ~ 3.6V
9	GND	Ground
10	IO15	GPIO15; MTDO; HSPICS; UARTO_RTS
11	102	GPIO2; UART1_TXD
12	100	GPIO0;HSPI_MISO;I2SI_DATA
13	104	GPIO4
14	105	GPIO5;IR_R
15	RXD	UARTO_RXD; GPIO3
16	TXD	UARTO_TXD; GPIO1

Module startup mode description

Mode	CH_PD(EN)	RST	GPIO15	GPIO0	GPIO2	TXD0
Download	High	High	Low	Low	High	High
Running	High	High	Low	high	High	High

Note: Some pins have been pulled up or pulled down internally, please refer to the schematic diagram

3. Electrical Parameters

3.1. Electrical Characteristics

Param	neter	Condition	Min	Typical	Max	Unit
Maxin solder tempe	num ing erature	IPC/JEDEC J-STD-020	-	-	260	°C
Voltag	je	VDD	3.0	3.3	3.6	V
	V _{IL} /V _{IH}	-	-0.3/0.75V _{io}	-	0.25V _{io} /3.6	V
I/O	V _{ol} /V _{oh}	-	N/0.8V ₁₀	-	0.1V _{IO} /N	V
	I _{MAX}	-	-	-	12	mA

3.2. RF performance

Description	Min	Typical	Max	Unit		
Input Frequency	2400	-	2484	MHz		
Input Reflection	-	-	-10	dB		
Output power						
PA output power at 72.2 Mbps	15.5	16.5	17.5	dBm		
PA output power in 11b mode	19.5	20.5	21.5	dBm		
Receiving sensitivity						

CCK, 1 Mbps			<=-90	dBm
CCK, 11 Mbps			<=-88	dBm
6 Mbps (1/2 BPSK)			<=-88	dBm
54 Mbps (3/4 64-QAM)			<=-75	dBm
HT20 (MCS7)			<=-70	dBm
	Adjacent	channel rejection		
OFDM, 6 Mbps			37	dBm
OFDM, 54 Mbps			21	dBm
HT20, MCS0			37	dBm
HT20, MCS7			20	dBm

3.3. Power consumption

The following power consumption figures are based on a 3.3V power supply, 25 °C ambient temperature, and measured using an internal voltage regulator.

• All measurements are performed at the antenna interface without a SAW filter.

• All transmission data is measured based on 90% duty cycle in continuous

transmission mode.

Mode	Min	Typical	Max	Unit
Tx 802.11b, ССК 11Mbps, Р _{оит} =+17dBm	-	170	-	mA
Tx 802.11g, OFDM 54Mbps, P _{out} =+15dBm	-	140	-	mA

Tx 802.11n, MCS7, Р _{оит} =+13dBm	-	120	-	mA
Rx 802.11b, packet length is 1024 bytes, -80dBm	-	50	-	mA
Rx 802.11g, packet length is 1024 bytes, -70dBm	-	56	-	mA
Rx 802.11n, packet length is 1024 bytes, -65dBm	-	56	-	mA
Modem-Sleep *	-	20	-	mA
Light-Sleep **	-	2	-	mA
Deep-Sleep ***	-	20	-	uA
Power Off	-	0.5	-	uA

Notes

* Modem-sleep is used in applications that require the CPU to be always on, such as PWM or I2S applications. When the WiFi connection is maintained, if there is no data transmission, the WiFi Modem circuit can be turned off according to the 802.11 standard (such as U-APSD) to save power. For example, in DTIM3, every 300 ms of sleep and 3 ms of wake up to receive the Beacon packet of the AP, etc., the overall average current is about 20 mA.

** Light-sleep is used for CPU suspendable applications, such as WiFi switches. When maintaining WiFi connection, if there is no data transmission, you can save power by turning off the WiFi Modem circuit and suspending the CPU according to the 802.11 standard (such as U-APSD). For example, in DTIM3, every 300 ms of sleep and 3 ms of wake-up to receive the Beacon packet of the AP, the overall average current is about 2 mA.

*** Deep-sleep is used for applications that do not need to keep WiFi connection for a long time, such

as a sensor that measures temperature every 100s. For example, after waking up from 300s to 0.3s \sim 1s to connect to the AP to send data, the overall average current can be much less than 1 mA. The current value of 20 μ A was measured at 2.5V.

For Deep-sleep applications, it is recommended to use a 470Ω resistor in series with the Reset Pin.

4. Dimensions

All dimensions are in mm. Tolerance ±0.2mm

Figure 3: Dimensions of Nucleo 4

5. Schematic

Figure 4: Schematics of Nucleo 4 Module

5.1. Application circuit

133	RST ADC EN GPIO16 GPIO14 GPIO12 GPIO13 VCC	TXD0 RXD0 GPIO5 GPIO4 GPIO0 GPIO2 GPIO15 GND	16 RXD 15 TXD 14 13 12 11 10 9
10uF 100nF			
GND GND			GND

Figure 5: Typical Application circuit for Nucleo 4 Module

5.2. Antenna Layout Requirements

For the installation position on the PCB, the following two methods are recommended:

Solution 1: Place the module on the edge of the motherboard, and the antenna area extends beyond the edge of the motherboard.

Solution 2: Place the module on the edge of the motherboard, and the edge of the motherboard hollows out an area at the antenna position.

In order to meet the performance of the on-board antenna, it is forbidden to place metal parts around the antenna and keep it away from high-frequency devices.

Figure 6: Recommended Installation Positions

5.3. Power supply

- Recommended 3.3V voltage, peak current above 500mA
- It is recommended to use LDO power supply; if using DC-DC, it is recommended to control the ripple within 30mV.
- The DC-DC power supply circuit is recommended to reserve the position of the dynamic response capacitor, which can optimize the output ripple when the load changes greatly.
- 3.3V power interface is recommended to add ESD devices.

5.4. Use of GPIO ports

Some GPIO ports are led out of the module. If you need to use a 10-100 ohm resistor in series with the IO port. This can suppress overshoot, and the levels on both sides are more stable. This helps in both EMI and ESD.

The special IO port is pulled up and down, please refer to the instruction manual of the specification, this will affect the startup configuration of the module.

The IO port of the module is 3.3V. If the IO level of the main control and the module does not match, a level conversion circuit needs to be added.

If the IO port is directly connected to a peripheral interface, or a pin or other terminal, it is recommended to reserve an ESD device near the terminal of the IO trace.

Figure 7: Reference Level Shifting Circuit

6. Reflow Profile

Reflow Soldering Zone	Temperature>217°C Peak Temp: 235~250°C	Time: 60-120 sec Time:30~70 sec
Cooling Zone	Peak Temp: 180°C	Cooling Slope: -5°C/sec

7. Packaging

The packaging of Nucleo 4 is in tray form.

8. Contact Us

Company website : <u>https://www.iotfy.com</u>

Sales Email : sales@iotfy.com